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Wireless Communication Systems
Seungcheol Oh

I. INTRODUCTION

Communication system in a nutshell is about transmitting information from one place and receiving the information correctly
in another place. If the medium which takes the transmitted signal to the receiver is free-space (air), then the system falls
under wireless communication. In modern era, most communication takes form of digital communication. This means that we
are exchanging information through bits. However, what would a stream of bits represent if a receiver and a transmitter does
not share a common codebook? The received stream of bits in that case would be entirely useless.

II. DISCRETE MEMORYLESS CHANNEL

A. Continuous-Time Band-limited Gaussian Channel

Consider a system where input x(t) and z(t) are both continuous. The relationship between the two is described as

y(t) = x(t) + z(t), (1)

where x(t) is power constrained 1
2T

∫ T

−T
x2(t)dt ≤ P , and z(t) is continuous Gaussian white noise process, characterized by

auto-correlation function,
r(τ) = E[z(t)z(t− τ)] =

No

2
δ(τ). (2)

This states that z(t) and z(t− τ) are uncorrelated for τ ̸= 0. In frequency domain, z(t) is characterized by it’s power spectral
density (PSD) described as

S(f) = F{r(τ)} =
No

2
, (3)

which states that all the frequency components has constant No

2 . How then, do we transmit a continuous signal through this
continuous time channel? The idea is to look at the band-width limited version of the channel. We do this by applying h(t), a
low-pass filter, to y(t) to produce ỹ(t). Since ỹ(t) is band-limited, we only need to consider band-limited x(t); which allows
us to use samples of x(t) to represent x(t). Sampling theorem states that if x(t) is such that X(f) is zero outside of [−ω, ω],
then sampled x(t) at 2ω samples per second is sufficient for reconstructing x(t) exactly.

Consider a system with continuous signal x(t). We now want to sample this signal by multiplying it with impulse train
described as

p(t) =

∞∑
k=−∞

δ(t− kT ). (4)

Delta function is only non-zero t = kT and zero else where (t ̸= kT ). In effect this creates a train of impulse (delta) functions
at times kT , where k is integer from −∞ to ∞. The sampling period T = 1

2ω , where ω is the highest frequency to represent
X(f). Therefore, xs(t) = x(t)p(t) effectively samples x(t) at every sampling period T. Then, we can describe the sampled
signal as

xs(t) = x(t)p(t) (5)

xs(t) = x(kT )

∞∑
k=−∞

δ(t− kT ). (6)

Now, Fourier transform of xs(t) should give

Xs(f) = X(f) ∗ P (f), (7)

where ∗ is convolution. We know that

F [p(t)] = P (f) =
1

T

∞∑
k=−∞

δ
(
f − k

T

)
=

1

T

∞∑
k=−∞

δ
(
f − 2ωk

)
. (8)

This leads to

Xs(f) =
1

T

∞∑
k=−∞

X
(
f − 2ωk

)
. (9)

This means that X(f) will repeat every 2ω in frequency domain. Note that it is crucial to sample at 2 times the maximum
frequency component of X(f) because the components will overlap if the sampling frequency is lower. Now, we have repeating
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X(f) every 2ω is frequency domain. We want to extract out one from each sample; therefore, we pass this with low-pass
filter. This filter blocks out frequency components and only save the content in the interval [−ω, ω]. Description of this low
pass filter is described as

Q(f) =
1

2ω
, in [ω, ω]. (10)

To filter, you simply multiply Xs(f) by (10) and recover

X(f) = Xs(f)Q(f). (11)

Now, what is the time version of this filter? We can compute this by using Fourier transform

x(t) =

∫ ∞

−∞
X(f)ej2πftdf. (12)

Now, we find the time version of Q(f) to be,

q(t) =

∫ ω

−ω

1

2ω
ej2πftdf =

ej2πωt − e−j2πωt

j2πt2ω
=

sin(2πωt)

2πωt
= sinc(t). (13)

Putting it all together in time domain, you convolve (5) with (13) and get

x̃s(t) =

∞∑
k=−∞

x(kT )sinc(t− kT ). (14)

In effect, we have converted the continuous-time signal x(t) to a discrete-time signal x(kT ).
Now, our input has become (14). For notation purpose, denote x(kT ) as xn, which denotes nth sample of x(t). We pass this

into the channel z(t) and receive y(t). However, how can we get back the samples of xn from output now? We use matched
filtering on y(t) to get back xn. We do this under the following knowledge that sinc(t − kT ) is a set of orthogonal basis
functions; this is described by ∫ ∞

−∞
sinc

(
t− n

2ω

)
sinc

(
t− m

2ω

)
dt =

{
1
2ω if m = n

0 if m ̸= n
. (15)

The match filtering then is described as

yn = 2ω

∫ ∞

−∞
y(t)sinc

(
t− n

2ω

)
dt (16)

= 2ω

∫ ∞

−∞

[ ∞∑
k=−∞

x(kT )sinc(t− kT )

]
sinc

(
t− nT

)
dt. (17)

Hence, we get a discrete-time channel:
yn = xx + zn, (18)

where zn = 2ω
∫∞
−∞ z(t)sinc

(
t− n

2ω

)
dt.

B. Physical Wireless Channel Modeling
C. Complex Baseband Model

The wireless communication systems are modeled as linear time-invariant (LTI) system. For a system to be linear, it must
satisfy the superposition and the homogeneity principle. Consider a linear system described as T (.); the relationship between
input x and output y is y = T (x). Then, superposition is described as

y = T (x1) + T (x2) = T (x1 + x2), (19)

which states that the response of a linear system to the sum of multiple inputs is equal to the sum of the responses of the
system to each individual input. Further, homogeneity is explained by

αy = T (αx), (20)

where same scalar α scales input as well as the output by the same amount.
Further, time invariant means that the system does not change over time. However, wireless communication channels change

constantly over time because of many factors. Nonetheless, we can safely assume that the channel is time-invariant in channel
coherence time; where coherence time is the time period where channel is approximately time-invariant. LTI system is described
as

yp(t) = (hp ∗ xp)(t) =

∫ −∞

∞
hp(u)xp(t− u)du, (21)

in time domain. Frequency representation of LTI system is

Y (f) = H(f)X(f). (22)
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III. CHANNEL CAPACITY

We have a stream of bits that we want to transmit to the receiver. For this to be done, we package the whole bit stream into
L separate symbols and send these in sequence. How would this particular communication system performance be measured?
That is characterized by asking how many L symbols the packet contains, how many bits each of the symbol contains, and
the probability of incorrect decoding at the receiver. These questions can be answered by channel capacity, which asks the
question of what the maximum throughput (symbols per second or bits per symbol) of a communication system is.

Consider random variables X and Y . We put X through a channel and it produces Y . We are interested in knowing how
much information from X can be carried over to Y through the channel; where the channel of the system is described by
conditional distribution fY |X(y|x). We know this question can be answered because of channel coding theorem; where it states
that C (bit per symbol) is the capacity of the channel if for any given δ > 0 and γ > 0, there exist a channel coding codebook
of a finite length L that has rate R = C − γ and offers an error probability P (error) ≤ γ. We abstract away the practical
method of finding this channel coding scheme, and move on with the belief that there exists such channel coding scheme.
Then, we can formally find a way to derive channel capacity.

Channel capacity is formally defined as
C = max

fX(x)
I(x; y), (23)

where I(x; y) = h(y)−h(y|x) is the mutual information between x and y. Hence, we want to maximize the mutual information
over the distribution of X. The differential entropy of y is described as

h(y) = −E[log2(fY (y))] ≤ log2(πeV ar(y)), (24)

the equality holds if y is distributed as complex Gaussian random variable. Further, we define conditional differential entropy,

h(y|x) = −E[log2(fY |X(y|x))]. (25)

Now, consider that x ∼ CN (0, p), where its probability density function is described as

fX(x) =
1

πp
e−

|x|2
p . (26)

Utilizing this, we can compute the differential entropy of x,

h(x) = −E[log2(fX(x))] = −
∫
C

1

πp
e−

|x|2
p log2

(
1

πp
e−

|x|2
p

)
dx (27)

=

∫
C

1

πp
e−

|x|2
p

(
log2(πp) +

|x|2

p
log2(e)

)
dx (28)

= log2(πp)

∫
C

1

πp
e−

|x|2
p dx+

log2(e)

p

∫
C

|x|2

πp
e−

|x|2
p dx (29)

= log2(πp) +
log2(e)

p
E[|x|2] = log2(πep) (30)

Now, we know assume that we know the distribution of x but what we do not know is distribution of y. However, the
relationship between x and y is y = gx+n, where g is the wireless channel and n ∼ CN (0, No) is noise. If we further assume
that we know all the information about g, we can characterize the differential entropy of (y|x) as

h(y|x) = [y − gx = n ∼ CN (0, No)] = log2(πeNo). (31)

Since addition of Gaussian random variable is also Gaussian, we know the distribution of h(y) if we assume x ∼ CN (0, p).
Further, we know that this will give us the upper-bound of h(y) because of (24). Therefore, we can differential entropy of y is

h(y) ≤ [y = gx+ n ∼ CN (0, q|g|2 +No)] = log2(πe(q|g|2 +No)). (32)

We now have everything to calculate the channel capacity which is described as

C = h(y)− h(y|x) = log2

(
1 +

q|g|2

No

)
. (33)

IV. MODULATION

We saw in sec. III, that we need input x ∼ CN (0, p) to reach the capacity.
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V. ESTIMATION THEORY

The objective of estimation theory is to estimate an unknown variable that cannot be directly observed, by utilizing an
observation that has information about this unknown variable. There are two major methods in estimation theory: the classical
and the Bayesian. In classical estimation, you consider the unknown variable to be a fixed variable where it does not change
in time. In Bayesian estimation, you think of the unknown variable as a realization of a random variable, which means it can
change. In wireless communication, estimation is usually required on estimating time-varying channels. Therefore, Bayesian
approach is most likely the estimation method that you will choose.

VI. WIRELESS CHANNEL

Is the wireless channel linear time-invariant? The linearity is given due to Maxwell’s equations. However, time-invariance
does not hold since channel changes over time. We still make analysis on channel as LTI because we consider the coherance time
as time invariant. Coherence time is the time that channel is approximately time-invariant. We usually accept that coherence
time Tc = λ

2v . It is important to note that coherence time is proportional to wavelength, meaning if frequency get higher,
coherence time gets shorter.


