
1

Sequence Models
Seungcheol Oh

I. INTRODUCTION

II. NATURAL LANGUAGE PROCESSING

A. Word Embedding

In NLP, it is important to translate tokens into machine recognizable representation. One way to achieve this is to represent
every token as one-hot vector. However, this approach is disadvantageous for two reasons; first, with finite memory space, it
might not be feasible to represent every token in the vocabulary as one-hot vector if the size of the vocabulary size is large.
Second, one-hot vector cannot represent the feature of the tokens because they treat each token as a unique entity. For example,
consider a prediction task where we want a machine to predict ”juice” when ”apple” or ”orange” are thrown as input. Although
the machine can predict that the next word for both apple and orange is juice with the right training, it does not perform this
with the knowledge that orange and apple share the feature of food with one-hot vector representation. Therefore, we turn to
represent tokens from one-hot vector to featured representation, which is word embedding.

We use the neural network to find perform the word embedding.

B. Seq2Seq

Sequence to sequence (seq2seq) model converts an input sequence, such as English sentence, to an output sequence, like
Korean sentence. Even though there are many example usage of sequence to sequence model, a great example of it problem
is machine translation. In a nutshell, long short term memory (LSTM) has been primarily used for seq2seq model because
of it’s ability to overcome vanishing gradient problem that vaillia recurrent neural network (RNN) suffers. It overcomes the
problem with long-term memory ”cell state” and short-term memory ”hidden-state.” However, vanishing gradient is not the
only problem in machine translation. Another huge problem comes from different grammer between the languages and different
input sequence length and output sequence length.

III. RECURRENT NEURAL NETWORK

A. Vanilla RNN

B. Long Short Term Memory

C. Gated Recurrent Unit

IV. ENCODER-DECODER TRANSFORMER

One main draw back of conventional RNN architectures such as LSTM and GRU is that it suffers from capturing long
term dependencies between the naturally sequential data. Further, it does not have a functionality to relate local time stamp
information to the current time stamp data. With the multi-headed attention mechanism, Transformer architecture is able to
capture the relationship between different parts of the input sequence, including long-range dependencies and local timestamp
information. In Fig. 1, the transformer architecture is illustrated. In this section, we will elaborate on how each block is
contributing to the whole transformer architecture.

A. Input Embedding & Positional Encoding

As mentioned in sec. II-A, each token of the input gets mapped to an embedding vector which has dimension of d. These
embedding vectors get stacked as row vectors in a matrix and we call this matrix an input embedding matrix. When LSTM
is used for machine translation, it loops through the tokens one by one; therefore, it has a sense of ordering. However, for
transformers, a chunk of tokens becomes an input. This loses the ordering between the tokens. For this reason, positional
encoding is added.



2

Fig. 1. Transformer Architecture

B. Self Attention

As explained, each token of the input is represented by an embedding vector. The objective of self-attention then, is to update
these embedding vectors such that it conveys the information about each token’s relationship between all the other tokens in
the sequence. There are three trainable parameters for the self-attention: query (Q), key (K) and value (V ). The self-attention
is described by these parameters as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where Q, K and V are query key and value matrices, respectively. The procedure to find these matrices is as follow: take
the input embedded matrix which is stacked row embedded vectors of each token added with positional encoding, make three
copies of the matrix, matrix multiply it with W q , W k and W v to find Q, K and V , respectively. What each row of Q and K
represents is the query and key of the tokens of the input. As shown in (1), dot product QKT is computed, which provides the
metric of how strongly a particular query is related with a particular key. It then gets scaled with

√
dk for numerical stability.

Finally softmax, described as

α(z⃗i) =
ezi∑K
j=1 e

zj
, for i = 1, ...,K, (2)

is applied to each row of QKT matrix. This keeps each row to sum to 1, as well giving score of how one token is related to
another.

For example, consider an input sentence ”YOUR CAT IS A LOVELY CAT”, which has sequence length 6, and dk = 512
(embedding vector dimension). First, find Q and K, then compute the score matrix. An illustration of the score matrix is
shown by Fig. 2. Take a closer look at first row of the matrix. Each element of the first row gives the ”score” of how related
each word, ”YOUR CAT IS A LOVELY CAT” is to YOUR. All the other row convey the same information but for other input
words in the sequence. Now, by (1), we see that the score matrix is matrix multiplied by V to finish generating the attention
matrix.

After we find the representation, we divide by number of dimension for numerical stability. Then, softmax is operated on
this matrix. This will represent highest number in each column to have highest probability. Then, we multiply this matrix via
V , which is the value matrix. Main job of V is to enhance the representation of correlated vectors in the word embedding
space this step allows the model to focus on capturing meaningful contextual information from the input sequence, ultimately
improving its ability to generate accurate outputs.



3

Fig. 2. QK Score Matrix

C. Multi-Headed Attention

V. DECODER-ONLY TRANSFORMER


