
1

Quantum Computing
Seungcheol Oh

I. INTRODUCTION

Quantum computing takes advantage of a natural quantum phenomena. This phenomena can best be described by introducing
an experiment designed by Otto Stern and Walther Gerlach. The main objective of the experiment was to figure out the spin
of an electron in an atom. Particularly, they were interested to find the spin of an electron in a silver atom.

First of all, what is the spin of an electron? According to Niels Bohr’s model, an atom consists of a positive nucleus orbited
by negative electrons. Electrons occupy energy levels that constrain them to certain radii. These levels usually have electrons
paired with opposite spins, meaning their magnetic moments cancel each other out. However, in a silver atom, the outermost
energy level has a single unpaired electron, resulting in a net magnetic moment because there is no other electron to cancel
its magnetic field in that energy level.

Stern and Gerlach were curious to find out the orientation of the magnetic field of the silver atom. Therefore, they set up
an experiment where they aligned north magnet on top and south magnet on bottom in vertical direction with a space between
them. Now, south magnet has stronger magnetic field then the north magnet. We also know that for magnets, opposites attract
and likes repel. The experiment is set up such that Stern and Gerlach shoot a silver atom in between these magnets. If the
orientation of the silver atom’s magnet is north on top and south on bottom, the atom will shoot up towards north since south
magnet on the bottom is stronger then the north magnet on the top. If the silver atom has south on top and north on bottom,
attraction force from bottom south magnet will be stronger, therefore the silver atom will shoot down towards south.

In a classical view, if the silver atom’s magnetic moment were aligned with the field, it would deflect in one direction, and
if aligned against the field, it would deflect in the opposite direction. However, the results of the experiment showed that the
silver atoms split into two distinct beams, one deflecting up and the other down. To everyone’s surprise, the atoms did not
deflect in a continuous range but rather in discrete steps, indicating the quantization of the spin. Each silver atom’s electron
had a 50% probability of being measured in the spin-up state and a 50% probability of being in the spin-down state, regardless
of its initial state before measurement.

This outcome demonstrated the inherent quantum nature of particles, where the electron’s spin does not have a definite value
until it is measured. Instead, it exists in a superposition of spin-up and spin-down states, a fundamental concept in quantum
mechanics and essential for quantum computing.

II. QUBIT

Qubits are fundamental unit of quantum information. For a bit, a fundamental unit of classical information, it only needs
to represent two mutually exclusive states (on or off). A practical implementation of a bit; therefore, is an electrical switch.
In contrast, qubits are usually represented by two-dimensional column vectors called kets. Further, qubits are measured which
outcomes two possible mutually exclusive states. To describe these states, we use an ordered orthonormal basis, typically
denoted as |0⟩ and |1⟩.

Qubits are fundamentally different from classical bits because two mutually exclusive states co-exist probabilistically before
measurement. This phenomenon is called superposition. Superposition is described as

α0 |0⟩+ α1 |1⟩ , (1)

where α0 and α1 are probability amplitudes and |0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
. Absolute value of these probability amplitudes |α0|2

and |α1|2 are probability of the qubit state jumping to |0⟩ and |1⟩, respectively, when measurement takes place. Consequently,
the sum of absolute value of probability amplitudes sum up to 1 to satisfy the probability axiom.

A. Bloch Sphere

Here is a simple description of a qubit in a superposition state, |ψ⟩ = α |0⟩+β |1⟩. If α, β ∈ R, we can completely describe
the geometry of the qubit state in a unit circle. However, in quantum computing, α, β ∈ C, which makes it difficult to visualize
the state of the qubit geometrically. Bloch solved this problem by describing the state of the qubit in a sphere. Here is how
this representation works.

Consider a qubit in a superposition state

|ψ⟩ = α |0⟩+ β |1⟩ (2)

= γαe
iϕα |0⟩+ γβe

iϕβ |1⟩ . (3)

2

Fig. 1. Bloch Sphere

III. ENTANGLEMENT

You have two particles, in which one particle’s state is described as α0 |a0⟩+α1 |a1⟩, and another particle’s state is described
as β0 |b0⟩ + β1 |b1⟩. In quantum computing, description of states of the arbitrary number of particles is expressed by tensor
product. Therefore, we can describe the states of the two particles as(
α0 |a0⟩+ α1 |a1⟩

)
⊗
(
β0 |b0⟩+ β1 |b1⟩

)
= α0 |a0⟩ ⊗ β0 |b0⟩+ α0 |a0⟩ ⊗ β1 |b1⟩+ α1 |a1⟩ ⊗ β0 |b0⟩+ α1 |a1⟩ ⊗ β1 |b1⟩ . (4)

Let’s consider another state that describes the state of the two particles described as

|a0⟩ ⊗ |b0⟩+ |a1⟩ ⊗ |b1⟩ . (5)

Now, if we take a closer look at (4), right side of the equation can successfully factor out the individual states of particle one
and particle two in the left side of the equation. However, can we do this with (5)? Clearly, we cannot; this means that this
state cannot be described by individually describing the state of the first particle and the state of the second particle. Therefore,
the two particles are entangled.

A. Example: Entangled Qubits
Let us look deeper into (5). This state means that α0β0 = α1β1 = 1 and α0β1 = α1β0 = 0. With this, we can rewrite (5) as

α0β0 |a0⟩ |b0⟩+ α0β1 |a0⟩ |b1⟩+ α1β0 |a1⟩ |b0⟩+ α1β1 |a1⟩ |b1⟩ , (6)

where for notational convenience we rewrite |ax⟩ |by⟩ = |ax⟩ ⊗ |by⟩. We then factor out |a0⟩ and |a1⟩, and describe (6) as

|a0⟩ (α0β0 |b0⟩+ α0β1 |b1⟩) + |a1⟩ (α1β0 |b0⟩+ α1β1 |b1⟩) =
1√
2
|a0⟩ (1 |b0⟩+ 0 |b1⟩) +

1√
2
|a1⟩ (0 |b0⟩+ 1 |b1⟩). (7)

Now, Alice who has the first qubit measures her qubit. Then with probability 1
2 the state either jumps to |a0⟩ associated with

1 |b0⟩+0 |b1⟩ or |a1⟩ associated with 0 |b0⟩+1 |b1⟩. After jumping to either state, Bob’s qubit, linked with states |b0⟩ and |b1⟩
immediately is determined to |b0⟩ or |b1⟩. Therefore, when two particles are entangled, measurement at one side affects the
state of the other particle immediately.

B. Example: Unentangled Qubits
Consider unentangled qubits in state described by 4. We can rewrite this as(

α0 |a0⟩+ α1 |a1⟩
)
⊗
(
β0 |b0⟩+ β1 |b1⟩

)
= |a0⟩ (α0β0 |b0⟩+ α0β1 |b1⟩) + |a1⟩ (α1β0 |b0⟩+ α1β1 |b1⟩). (8)

Let us assume that α0β0 = 1
2
√
2

, α0β1 =
√
3

2
√
2

, α1β0 = 1
2
√
2

and α1β1 =
√
3

2
√
2

. Then, (8) can be expressed as

|a0⟩
(1

2
√
2
|b0⟩+

√
3

2
√
2
|b1⟩

)
+ |a1⟩

(1

2
√
2
|b0⟩+

√
3

2
√
2
|b1⟩

)
=

1√
2
|a0⟩

(1
2
|b0⟩+

√
3

2
|b1⟩

)
+

1√
2
|a1⟩

(1
2
|b0⟩+

√
3

2
|b1⟩

)
.

(9)

Same as example with entangled states, if Alice measures her qubit, it either jumps to |a0⟩ or |a1⟩ with half probability.
However, this time, Bob’s qubit state does not get affected, it still remains as 1

2 |b0⟩+
√
3
2 |b1⟩ in both states.

There are many ways to entangle qubits which were initially unentangled. However, in theory of quantum computing, we
abstract away from the practical method of entangling qubit. Instead, we describe it mathematically by applying CNOT gate.
In the later section, we will discuss quantum gates which are just operations that can be described by orthogonal matrices.

3

IV. QUANTUM GATES

In classical computation, logic gates such as AND, NAND, OR, NOR, XOR, and NOT, are used to perform Boolean function,
which is a function whose argument and result both assumes value from a two-element set. This is why logic gates are used
in classical computation whose unit is in bits (0 or 1). Therefore, logic gates are just electrical circuits that manipulate bits in
classical computation. In quantum computation, there also exists quantum gates which does similar operation to manipulate
qubits. Since qubits are represented by vectors in a complex vector space, with the standard basis (computational basis)
consisting of two orthogonal states, quantum gates, abstracted away from practical methods to make them, are represented by
unitary matrices that operate on these basis states. These matrices change the state of qubits through linear transformations,
allowing for superposition and entanglement, which are key features of quantum computation. For example, as briefly mentioned
in Sec. III, CNOT gate is a quantum gate. In the following subsections, we describe the important gates that become foundation
for quantum circuit and quantum algorithms.

A. Controlled NOT (CNOT) Gate

CNOT gate described by

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (10)

In diagram, CNOT gate is represented as
•

The main usage of CNOT gate as mentioned, is that it entangles the qubits. For example, consider two qubits each in state
α |a⟩ and β |b⟩. We can describe the states of two quibits with tensor product as

α |a⟩ ⊗ β |b⟩ , (11)

where a =

[
a0
a1

]
and b =

[
b0
b1

]
. We put this through CNOT gate which becomes

CNOT (α |a⟩ ⊗ β |b⟩) = αβ

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

a0b0
a0b1
a1b0
a1b1

 = αβ

a0b0
a0b1
a1b1
a1b0

 . (12)

Note that 12 cannot be factored out as individual qubit state tensor product with the other qubit state. Therefore, two qubits are
entangled in the state 12. We can see that product of inner amplitudes is a0a1b1b1 and outer amplitudes is a0a1b0b0; therefore,
two qubits are entangled.

B. Pauli Gates

There are four other gates, called Pauli Gates, which are important to note. They become foundation for superdense coding
and quantum teleportation. First, there is the I gate which is described as

I =

[
1 0
0 1

]
. (13)

This is a standard identity matrix which will leave the state of qubit unchanged. Next is Z gate which preserves the basis
vectors, but changes the sign of probability amplitude. This gate is described as

Z =

[
1 0
0 −1

]
. (14)

For example, consider a qubit in superposition state a0 |0⟩+ a1 |1⟩. We put this through Z gate, which results in

Z(a0 |0⟩+ a1 |1⟩) =
[
1 0
0 −1

] [
a0
a1

]
=

[
a0
−a1

]
= a0 |0⟩ − a1 |1⟩ . (15)

Next, we have X gate which interchanges the basis vectors, it is described as

X =

[
0 1
1 0

]
. (16)

4

Consider putting a qubit in state a0 |0⟩+ a1 |1⟩ through X gate.

X(a0 |0⟩+ a1 |1⟩) =
[
0 1
1 0

] [
a0
a1

]
=

[
a1
a0

]
= a1 |0⟩+ a0 |1⟩ . (17)

Lastly, there is Y gate which interchanges the basis as well as the relative phase. This gate is described by an orthogonal
matrix

Y =

[
0 1
−1 0

]
. (18)

We put a qubit in state a0 |0⟩+ a1 |1⟩ through this gate to produce,

Y (a0 |0⟩+ a1 |1⟩) =
[
0 1
−1 0

] [
a0
a1

]
=

[
−a1
a0

]
= −a1 |0⟩+ a0 |1⟩ . (19)

C. Hadamard Gate

Hadamard gate puts standard basis vector into superposition, it is described as

H =
1√
2

[
1 1
1 −1

]
. (20)

Hadamard gate is foundation of Bell circuit, which gets used for quantum teleportation and superdense coding. In diagram, it
is represented as

H

If we input |0⟩ through Hadamard gate, it becomes

H(|0⟩) = 1√
2
(|0⟩+ |1⟩). (21)

Analogously, |1⟩ through Hadamard gate produces

H(|1⟩) = 1√
2
(|0⟩ − |1⟩). (22)

V. QUANTUM CIRCUITS

We have discussed various number of gates that can be used to manipulate qubits. If we place them carefully together, we
can create circuits. These circuits become basis to perform superdense coding and quantum teleportation.

A. Bell’s Circuit

The basic configuration of Bell’s circuit is drawn as such

H •

where it applies Hadamard gate followed by CNOT gate. Consider applying |0⟩ to both top and bottom qubit which would
look like a figure below.

|0⟩ H •

|0⟩
After the first qubit passes through Hadamard gate, the qubit will be expressed as 1√

2
|0⟩ + 1√

2
|1⟩. This with bottom qubit

forms 1√
2
|00⟩+ 1√

2
|10⟩. Then it goes through CNOT gate and it finally becomes 1√

2
|00⟩+ 1√

2
|11⟩. Now, we can do the same

operation to all possible combinations of qubits (|00⟩ , |01⟩ , |10⟩ , |11⟩). Then, we get what is called a Bell basis described as

B(|00⟩) = 1√
2
|00⟩+ 1√

2
|11⟩ (23)

B(|01⟩) = 1√
2
|10⟩+ 1√

2
|01⟩ (24)

B(|10⟩) = 1√
2
|00⟩ − 1√

2
|11⟩ (25)

B(|11⟩) = 1√
2
|10⟩ − 1√

2
|01⟩ . (26)

5

Very neat operation that we can do on the Bell’s basis is that once we apply the reverse circuit, we extract out the original
qubit state. The complete circuit even with the reverse operation in diagram is illustrated as

H • • H

where this becomes basis for superdense coding.

B. Superdense Coding

Superdense coding has a simple objective. Alice wants to transmit 2 bits of information to Bob. This means that she sends
one of 00, 01, 10, or 11 to Bob. If we assume that there is no error between Alice and Bob’s transmission channel and they
are using classical bits, this is a simple task. Alice would send two bits to Bob and he can receive them without error; the
task is done. However, the challenge is that they are performing this task with two qubits; one at Alice’s side and the another
at Bob’s side. How would they communicate two bits of information if Alice is to only send one qubit to Bob? Further, even
if Alice successfully sends her qubit in superposition state a0 |0⟩ + a1 |1⟩ to Bob, Bob randomly measures one of her basis
with probability. Moreover, Bob would have to receive the second bit by measuring his own qubit with randomness.

Superdense coding solves these problems first with entanglement. Alice and Bob each having one qubit that is entangled
with another. The entangled qubits are in the state 1√

2
|00⟩+ 1√

2
|11⟩. Notice that this is one of the Bell’s basis. Therefore, if

Bob receives the Alice’s qubit without any error, he puts her qubit and his own qubit through a reverse Bell’s circuit; he will
measure 00. Same logic applies to any other bit information, if Alice wants to send 01, she would apply X gate to her qubit
to swap the basis of the qubit in superposition state. If she wants to send 10, she applies Z gate; finally, if she wants to send
11, she applies Y gate. Whatever bit information Alice wants to send, Bob only has to put her qubit and his qubit through the
reverse circuit and measure the received information that Alice intended to send.

C. Quantum Teleportation

The objective of quantum teleportation is that Alice wants to teleport a specific qubit state that she has to Bob. Consider a
qubit state, a0 |0⟩+ a1 |1⟩, which Alice has and she wants to teleport this state to Bob. This is challenging because even Alice
does not know the exact state of her qubit. Furthermore, lets say Alice is curious about the state of her qubit and she decides
to measure it. Then, the qubit jumps to a state, which changes the state of her qubit that she originally wanted to teleport to
Bob. Even though this is a challenging task, by utilizing entanglement and classical bit communication, this task is achievable.

For the quantum teleportation to take place, Alice and Bob must follow the following procedure described by the diagram
below.

a0 |0⟩+ a1 |1⟩ • H
1√
2
(|00⟩+ |11⟩)

1√
2
(|00⟩+ |11⟩)

First of all, Alice and Bob must share each of the entangled qubits in the state 1√
2
|00⟩ + 1√

2
|11⟩. Alice also has a qubit in

the state, a0 |0⟩+ a1 |1⟩, that she wants to teleport to Bob. We have three qubits which can be described as(
a0 |0⟩+ a1 |1⟩

)
⊗
(

1√
2
|00⟩+ 1√

2
|11⟩

)
=

a0√
2
|000⟩+ a0√

2
|011⟩+ a1√

2
|100⟩+ a1√

2
|111⟩ . (27)

Now, the top two qubits gets passed through a CNOT gate which then changes the state of the qubit as
a0√
2
|000⟩+ a0√

2
|011⟩+ a1√

2
|110⟩+ a1√

2
|101⟩ = a0√

2
|0⟩ ⊗ |00⟩+ a0√

2
|0⟩ ⊗ |11⟩+ a1√

2
|1⟩ ⊗ |10⟩+ a1√

2
|1⟩ ⊗ |01⟩ . (28)

Then, we apply Hadamard gate to the first qubit which changes the state as
a0
2

|00⟩ ⊗ |0⟩+ a0
2

|10⟩ ⊗ |0⟩+ a0
2

|01⟩ ⊗ |1⟩+ a0
2

|11⟩ ⊗ |1⟩+ (29)
a1
2

|01⟩ ⊗ |0⟩ − a1
2

|11⟩ ⊗ |0⟩+ a1
2

|00⟩ ⊗ |1⟩ − a1
2

|10⟩ ⊗ |1⟩ = (30)

1

2
|00⟩ ⊗ (a0 |0⟩+ a1 |1⟩) +

1

2
|01⟩ ⊗ (a0 |1⟩+ a1 |0⟩) +

1

2
|10⟩ ⊗ (a0 |0⟩ − a1 |1⟩) +

1

2
|11⟩ ⊗ (a0 |1⟩ − a1 |0⟩). (31)

Alice will get one of four states (|00⟩ , |01⟩ , |10⟩ , |11⟩) with probability of 1
4 if she measures her qubit. After she observes

her measurement, she transmits the result to Bob in a classical manner. Based on what she communicated to Bob, he sends
his qubit through specific Pauli gates to obtain the state a0 |0⟩ + a1 |1⟩. For example, if Alice communicates 01, Bob would
send his qubit through X gate. Now, Bob has fixed his qubit state to what Alice’s original qubit state. Therefore, the qubit
state of Alice successfully teleported to Bob.

6

VI. SIMPLE QUANTUM ALGORITHMS

It is widely believed that quantum algorithms can perform faster than classical algorithms. This is because, instead of
processing calculations one bit at a time, quantum algorithms can process qubits in multiple states simultaneously due to
superposition. This ”quantum parallelism” is often cited as the reason why quantum algorithms are thought to be faster than
classical algorithms. However, while this is partly true, the explanation cannot stop there. Even if a superposition of states is
processed, obtaining a meaningful result requires measurement. Upon measurement, a qubit collapses into one of its possible
states, which seems to introduce randomness. Wouldn’t this make things more complex to deal with? The real advantage comes
from the ability to carefully manipulate the superposition and entanglement of qubits such that, when measurement occurs, the
result provides useful information. In this section, we will describe how exactly the quantum algorithms are used such that it
outperforms classical algorithms.

A. P and NP problems

To fairly compare the time complexity between classical algorithm and quantum algorithm, we must define how speed of
algorithms are measured. Best introduction to explain this is to introduce following problems.

• Find two whole numbers bigger than 1 whose product is equal to 35.
• Find two whole numbers bigger than 1 whose product is equal to 187.
• Find two whole numbers bigger than 1 whose product is euqal to 2,407
• Find two whole numbers bigger than 1 whose product is equal to 88,631.

Finding factors of a number seems like an easy task until the scale of the problem becomes larger. Compare the first and last
problem statements. It is much easier to find two whole numbers that are factors of 35 than 88,631. Now, consider a different
set of problems.

• Multiply 7 and 5 and check that it equals 35.
• Multiply 11 and 17 and check that it equals 187.
• Multiply 29 and 83 and check that it equals 2407.
• Multiply 337 and 263 and check that it equals 88,631.

Clearly, the complexity of this problem does not grow as fast as the scale of the problem increase.
For further analysis, denote the number of input digit n. For example, the first problem statement has n = 2 and the last

problem has n = 5. Furthermore, denote T (n) the time to solve a question of input length n. If we can find some positive
number k and p such that we can show T (n) ≤ knp, ∀n, this is problem can be solved in polynomial time. On the other
hand, if we find a positive number k and a number c > 1, such that T (n) > kcn, ∀n, the problem requires exponential time
to solve.

Let us get back to the two sets of problems. Clearly, the first set of problem require exponential time to solve as n increases.
However, second set only require polynomial time to solve; therefore, the second set of question falls under polynomial (P)
problem. If the original problem cannot be solved in polynomial time, but given the answer to the problem and checking for
the answer takes polynomial time, the problem is said to be a non-deterministic (NP) problem. Clearly, P is in NP because
checking for P problem would also take polynomial time. However, is NP in P? No one has ever been able to prove this.

B. Deutsch’s Algorithm

The problem statement that Deutsch’s algorithm is trying to answer is as follow. We are given four sets of functions,
f0, f1, f2, f3, where

• f0(0) = 0 and f0(1) = 0,
• f1(0) = 0 and f1(1) = 1,
• f2(0) = 1 and f2(1) = 0,
• f3(0) = 1 and f3(1) = 1.

Since f0 and f3 results same output regardless of the input, we call it a constant function. Moreover, since output of f1 and
f2 are 0 and 1 depending on the input, we call it a balanced function. The problem statement is as follow: given one of
these functions at random, how many times do we need to evaluate the function to find out if the function is constant or
balanced? Classically, we can answer this problem by evaluating the function two times. However, Deutsch’s algorithm solves
this problem such that we only need to evaluate the function once.

First step to understand the algorithm is to look at how input and output of the function will look like. This is described by
the diagram below.

|x⟩
fi

|x⟩
|y⟩ |y ⊕ fi(x)⟩

The truth table of this diagram is described as Table I. We will use Deutsch’s algorithm to only use quantum circuit once to

7

TABLE I
TRUTH TABLE FOR THE QUANTUM CIRCUIT

Input Output
|0⟩ ⊗ |0⟩ |0⟩ ⊗ |fi(0)⟩
|0⟩ ⊗ |1⟩ |0⟩ ⊗ |fi(0)⊕ 1⟩
|1⟩ ⊗ |0⟩ |1⟩ ⊗ |fi(1)⟩
|1⟩ ⊗ |1⟩ |1⟩ ⊗ |fi(1)⊕ 1⟩

determine if the randomly given function is constant or balanced. The diagram of Deutsch’s algorithm is given as below.

|0⟩ H
fi

H

|1⟩ H

We take a look at this step by step. After |0⟩ passes through Hadamard gate, it becomes 1√
2
(|0⟩+ |1⟩). Similarly, |1⟩ becomes

1√
2
(|0⟩−|1⟩) after it passes through Hadamard gate. The state of the two qubits then, is described as 1

2 (|00⟩−|01⟩+|10⟩−|11⟩).
This goes through the the gate and the output is express as

1

2

(
|0⟩ ⊗ (|fi(0)⟩ − |0⟩ ⊗ |fi(0)⊕ 1⟩) + |1⟩ ⊗ (|fi(1)⟩ − |fi(1)⊕ 1⟩)

)
(32)

=
1

2

(
|0⟩ ⊗

(
(−1)fi(0)(|0⟩ − |1⟩)

)
+ |1⟩ ⊗

(
(−1)fi(1)(|0⟩ − |1⟩)

))
(33)

=
1√
2

(
(−1)fi(0) |0⟩+ (−1)f1(1)|1⟩

)
⊗ 1√

2
(|0⟩ − |1⟩). (34)

We take a look at what (34) looks like for each function:
• f0 → 1√

2
(|0⟩+ |1⟩),

• f1 → 1√
2
(|0⟩ − |1⟩),

• f0 → − 1√
2
(|0⟩ − |1⟩),

• f0 → − 1√
2
(|0⟩+ |1⟩).

We send the top qubit through Hadamard gate and take the measurement. The result will look like below for all values of i:
• i = 0 → |0⟩,
• i = 1 → |1⟩,
• i = 2 → −|1⟩,
• i = 3 → −|0⟩.

Therefore, by measuring once, we can tell if the function is constant or balanced.

C. Deutsch-Jozsa Algorithm

Deutsch-Jozsa algorithm is a generalization of Deutsch’s algorithm for n input size to the function.

D. Simon’s Algorithm

