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Continuous-Time Band-limited Gaussian Channel
Seungcheol Oh

I. CT BAND-LIMITED CHANNEL

Consider a system where input x(t) and z(t) are both continuous. The relationship between the two is described as

y(t) = x(t) + z(t), (1)

where x(t) is power constrained 1
2T

∫ T

−T
x2(t)dt ≤ P , and z(t) is continuous Gaussian white noise process, characterized by

auto-correlation function,
r(τ) = E[z(t)z(t− τ)] =

No

2
δ(τ). (2)

This states that z(t) and z(t− τ) are uncorrelated for τ ̸= 0. In frequency domain, z(t) is characterized by it’s power spectral
density (PSD) described as

S(f) = F{r(τ)} =
No

2
, (3)

which states that all the frequency components has constant No

2 . How then, do we transmit a continuous signal through this
continuous time channel? The idea is to look at the band-width limited version of the channel. We do this by applying h(t), a
low-pass filter, to y(t) to produce ỹ(t). Since ỹ(t) is band-limited, we only need to consider band-limited x(t); which allows
us to use samples of x(t) to represent x(t). Sampling theorem states that if x(t) is such that X(f) is zero outside of [−ω, ω],
then sampled x(t) at 2ω samples per second is sufficient for reconstructing x(t) exactly.

Consider a system with continuous signal x(t). We now want to sample this signal by multiplying it with impulse train
described as

p(t) =

∞∑
k=−∞

δ(t− kT ). (4)

Delta function is only non-zero t = kT and zero else where (t ̸= kT ). In effect this creates a train of impulse (delta) functions
at times kT , where k is integer from −∞ to ∞. The sampling period T = 1

2ω , where ω is the highest frequency to represent
X(f). Therefore, xs(t) = x(t)p(t) effectively samples x(t) at every sampling period T. Then, we can describe the sampled
signal as

xs(t) = x(t)p(t) (5)

xs(t) = x(kT )

∞∑
k=−∞

δ(t− kT ). (6)

Now, Fourier transform of xs(t) should give

Xs(f) = X(f) ∗ P (f), (7)

where ∗ is convolution. We know that

F [p(t)] = P (f) =
1

T

∞∑
k=−∞

δ
(
f − k

T

)
=

1

T

∞∑
k=−∞

δ
(
f − 2ωk

)
. (8)

This leads to

Xs(f) =
1

T

∞∑
k=−∞

X
(
f − 2ωk

)
. (9)

This means that X(f) will repeat every 2ω in frequency domain. Note that it is crucial to sample at 2 times the maximum
frequency component of X(f) because the components will overlap if the sampling frequency is lower. Now, we have repeating
X(f) every 2ω is frequency domain. We want to extract out one from each sample; therefore, we pass this with low-pass
filter. This filter blocks out frequency components and only save the content in the interval [−ω, ω]. Description of this low
pass filter is described as

Q(f) =
1

2ω
, in [ω, ω]. (10)

To filter, you simply multiply Xs(f) by (10) and recover

X(f) = Xs(f)Q(f). (11)
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Now, what is the time version of this filter? We can compute this by using Fourier transform

x(t) =

∫ ∞

−∞
X(f)ej2πftdf. (12)

Now, we find the time version of Q(f) to be,

q(t) =

∫ ω

−ω

1

2ω
ej2πftdf =

ej2πωt − e−j2πωt

j2πt2ω
=

sin(2πωt)

2πωt
= sinc(t). (13)

Putting it all together in time domain, you convolve (5) with (13) and get

x̃s(t) =

∞∑
k=−∞

x(kT )sinc(t− kT ). (14)

In effect, we have converted the continuous-time signal x(t) to a discrete-time signal x(kT ).
Now, our input has become (14). For notation purpose, denote x(kT ) as xn, which denotes nth sample of x(t). We pass this

into the channel z(t) and receive y(t). However, how can we get back the samples of xn from output now? We use matched
filtering on y(t) to get back xn. We do this under the following knowledge that sinc(t − kT ) is a set of orthogonal basis
functions; this is described by ∫ ∞

−∞
sinc

(
t− n

2ω

)
sinc

(
t− m

2ω

)
dt =

{
1
2ω if m = n

0 if m ̸= n
. (15)

The match filtering then is described as

yn = 2ω

∫ ∞

−∞
y(t)sinc

(
t− n

2ω

)
dt (16)

= 2ω

∫ ∞

−∞

[ ∞∑
k=−∞

x(kT )sinc(t− kT )

]
sinc

(
t− nT

)
dt. (17)

Hence, we get a discrete-time channel:
yn = xx + zn, (18)

where zn = 2ω
∫∞
−∞ z(t)sinc

(
t− n

2ω

)
dt.


