Continuous-Time Band-limited Gaussian Channel

Seungcheol Oh

I. CT BAND-LIMITED CHANNEL

Consider a system where input x(t) and z(t) are both continuous. The relationship between the two is described as

$$y(t) = x(t) + z(t),$$
 (1)

where x(t) is power constrained $\frac{1}{2T} \int_{-T}^{T} x^2(t) dt \le P$, and z(t) is continuous Gaussian white noise process, characterized by auto-correlation function,

$$r(\tau) = \mathbb{E}[z(t)z(t-\tau)] = \frac{N_o}{2}\delta(\tau).$$
(2)

This states that z(t) and $z(t-\tau)$ are uncorrelated for $\tau \neq 0$. In frequency domain, z(t) is characterized by it's power spectral density (PSD) described as

$$S(f) = \mathcal{F}\{r(\tau)\} = \frac{N_o}{2},\tag{3}$$

which states that all the frequency components has constant $\frac{N_o}{2}$. How then, do we transmit a continuous signal through this continuous time channel? The idea is to look at the band-width limited version of the channel. We do this by applying h(t), a low-pass filter, to y(t) to produce $\tilde{y}(t)$. Since $\tilde{y}(t)$ is band-limited, we only need to consider band-limited x(t); which allows us to use samples of x(t) to represent x(t). Sampling theorem states that if x(t) is such that X(f) is zero outside of $[-\omega, \omega]$, then sampled x(t) at 2ω samples per second is sufficient for reconstructing x(t) exactly.

Consider a system with continuous signal x(t). We now want to sample this signal by multiplying it with impulse train described as

$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT).$$
⁽⁴⁾

Delta function is only non-zero t = kT and zero else where $(t \neq kT)$. In effect this creates a train of impulse (delta) functions at times kT, where k is integer from $-\infty$ to ∞ . The sampling period $T = \frac{1}{2\omega}$, where ω is the highest frequency to represent X(f). Therefore, $x_s(t) = x(t)p(t)$ effectively samples x(t) at every sampling period T. Then, we can describe the sampled signal as

$$x_s(t) = x(t)p(t) \tag{5}$$

$$x_s(t) = x(kT) \sum_{k=-\infty}^{\infty} \delta(t - kT).$$
(6)

Now, Fourier transform of $x_s(t)$ should give

$$X_s(f) = X(f) * P(f), \tag{7}$$

where * is convolution. We know that

$$\mathcal{F}[p(t)] = P(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(f - \frac{k}{T}\right) = \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta\left(f - 2\omega k\right).$$
(8)

This leads to

$$X_s(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(f - 2\omega k).$$
⁽⁹⁾

This means that X(f) will repeat every 2ω in frequency domain. Note that it is crucial to sample at 2 times the maximum frequency component of X(f) because the components will overlap if the sampling frequency is lower. Now, we have repeating X(f) every 2ω is frequency domain. We want to extract out one from each sample; therefore, we pass this with low-pass filter. This filter blocks out frequency components and only save the content in the interval $[-\omega, \omega]$. Description of this low pass filter is described as

$$Q(f) = \frac{1}{2\omega}, \text{ in } [\omega, \omega].$$
(10)

To filter, you simply multiply $X_s(f)$ by (10) and recover

$$X(f) = X_s(f)Q(f).$$
⁽¹¹⁾

Now, what is the time version of this filter? We can compute this by using Fourier transform

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df.$$
(12)

Now, we find the time version of Q(f) to be,

$$q(t) = \int_{-\omega}^{\omega} \frac{1}{2\omega} e^{j2\pi ft} df = \frac{e^{j2\pi\omega t} - e^{-j2\pi\omega t}}{j2\pi t 2\omega} = \frac{\sin(2\pi\omega t)}{2\pi\omega t} = \operatorname{sinc}(t).$$
(13)

Putting it all together in time domain, you convolve (5) with (13) and get

$$\tilde{x}_s(t) = \sum_{k=-\infty}^{\infty} x(kT) \operatorname{sinc}(t - kT).$$
(14)

In effect, we have converted the continuous-time signal x(t) to a discrete-time signal x(kT).

Now, our input has become (14). For notation purpose, denote x(kT) as x_n , which denotes n^{th} sample of x(t). We pass this into the channel z(t) and receive y(t). However, how can we get back the samples of x_n from output now? We use matched filtering on y(t) to get back x_n . We do this under the following knowledge that $\operatorname{sinc}(t - kT)$ is a set of orthogonal basis functions; this is described by

$$\int_{-\infty}^{\infty} \operatorname{sinc}\left(t - \frac{n}{2\omega}\right) \operatorname{sinc}\left(t - \frac{m}{2\omega}\right) dt = \begin{cases} \frac{1}{2\omega} & \text{if } m = n\\ 0 & \text{if } m \neq n \end{cases}.$$
(15)

The match filtering then is described as

$$y_n = 2\omega \int_{-\infty}^{\infty} y(t) \operatorname{sinc}\left(t - \frac{n}{2\omega}\right) dt \tag{16}$$

$$= 2\omega \int_{-\infty}^{\infty} \left[\sum_{k=-\infty}^{\infty} x(kT) \operatorname{sinc}(t-kT) \right] \operatorname{sinc}(t-nT) dt.$$
(17)

Hence, we get a discrete-time channel:

$$y_n = x_x + z_n,\tag{18}$$

where $z_n = 2\omega \int_{-\infty}^{\infty} z(t) \operatorname{sinc}\left(t - \frac{n}{2\omega}\right) dt$.