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Abstract— By selecting the best M ′ out of M anten-
nas, antenna selection significantly lowers the hardware
complexity of MIMO system with large antenna elements
at both link ends. The computational complexity of the
widely used antenna selection method is NP-hard. We
lower the complexity by formulating the selection problem
as a convex optimization problem. We apply this technique
to the polarized-MIMO (P-MIMO) system to additionally
gain the benefit of polarization diversity to the system.
Our simulation result validates that by employing antenna
selection to P-MIMO, we can achieve full conventional uni-
polarized MIMO capacity with just a subset of antennas.
Further, using convex optimization for antenna selection
gives a close agreement to that obtained by brute-force
numerical search, while yielding lower computational com-
plexity.

I. INTRODUCTION

Multiple input multiple output (MIMO) communi-
cation system has been the furnace of wireless com-
munication system for the past recent years. Naturally,
much effort has been invested by the leading scholars
to enhance the MIMO system. One particular area for
enhancement has been to address the high hardware
complexity of MIMO which require N ×M number of
RF chains for a system with N number transmitters (Tx)
and M number of receivers (Rx). In this context, antenna
selection is a promising choice that can significantly
mitigate this problem because it chooses a subset of
antenna elements which captures a large portion of the
full MIMO system capacity. By selecting M ′ out of
M Rx antennas, antenna selection reduces the hardware
complexity by lowering the number of RF chains of Rx
from M to M ′.

Another way to enhance MIMO system is to incor-
porate polarization diversity. Polarization diversity has
demonstrated a promising potential to improve MIMO
system in terms of symbol error rate (SER) and channel
capacity. In particular, [1] describes a polarized-MIMO

system that significantly increases the channel capacity
from that of the conventional MIMO system. To further
enhance the MIMO system, this paper serves to combine
polarization diversity and antenna selection by capturing
the benefit they both provide.

The advantage of antenna selection is demonstrated in
[2], [3]. However, polarization diversity is not taken into
account in the majority of previous research works. Al-
though there are previous reports that consider polariza-
tion diversity with antenna selection, they consider fixed
antenna polarization, [4], [5]. In contrast, we exploit an-
tenna selection with polarization-agile antenna elements
which significantly outperforms the conventional scheme
of the conventional MIMO system. Further, most of
the antenna selection algorithm has high computational
complexity, as the antennas are selected with brute-
force search. However, this paper formulates and solves
the antenna selection problem as a convex optimization
problem which yields lower computational complexity.

II. SYSTEM MODEL

Polarized-MIMO (P-MIMO) system with antenna se-
lection is illustrated by Fig. 1, where antenna elements
change the antenna polarization angles to any continuous
degrees. Our objective is to select M ′ out of M such
antenna elements at Rx. The effective channel matrix of
P-MIMO system is described as

Heff =

 p⃗ T
Rx,1H11p⃗Tx,1 . . . p⃗ T

Rx,1H1N p⃗Tx,N

...
. . .

...
p⃗ T
Rx,MHM1p⃗Tx,1 . . . p⃗ T

Rx,MHMN p⃗Tx,N

 ,

(1)
where the operation (·)T is the transpose of

a given vector or matrix. Further, Hij is called
“polarization-basis matrix”, which is expressed as

Hij =

[
hvvij hvhij
hhvij hhhij

]
, (2)
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Fig. 1. Antenna selection in P-MIMO system.

where hxyij with x ∈ {v, h}; y ∈ {v,h} is the XY-channel
impulse response from the Y-polarization Tx antenna to
the X-polarization Rx antenna. Each entry of (2) is mod-
eled as independent identically distributed (i.i.d.) zero-
mean, circularly symmetric complex Gaussian (ZMC-
SCG) random variables with unit variance. Lastly, p⃗Tx,j

and p⃗Rx,i are, respectively, the Tx-polarization vector at
the jth Tx antenna and the Rx-polarization vector at the
ith Rx antenna, and they are expressed as

p⃗Tx,j =

[
pvTx,j

phTx,j

]
=

[
cos θj
sin θj

]
, (3)

p⃗Rx,i =

[
pvRx,i

phRx,i

]
=

[
cos θi
sin θi

]
. (4)

Here, we call the angles θj and θi Tx- and Rx-
polarization angles, respectively. It is worth mentioning
that Tx- and Rx-polarization vectors are unit vectors
so that the overall signal power is preserved. Optimal
polarization vectors that maximize the sum of squared
singular value of (1) is described in detail in [1].

We consider a system where Tx does not know about
the channel while Rx does. Then the capacity of P-
MIMO system is described by

C(Heff) = log2det(IN + γRss(H
eff)HHeff), (5)

where γ is the signal to noise ratio (SNR), IN is the
N ×N identity matrix and Rss is the covariance matrix
of Tx signals. Since Tx does not know about the channel,
Rss is chosen as IN/N and optimal polarization is found
only at the Rx while the Tx has its antenna polarization
at random angles.

III. ANTENNA SELECTION AS CONVEX

OPTIMIZATION PROBLEM

Antenna selection chooses M ′ out of M receivers. We
express (5) with M ′ selected receivers as

Cr(H
eff
r ) = log2det(IN + γRss(H

eff
r )HHeff

r ), (6)

where the dimension of Heff
r is M ′ × N . Further, we

define (5) as a function of selected antennas by defining
∆i as

∆i =

{
1, if ith receive antenna selected
0, if otherwise.

(7)

Using (7), capacity described by (6) becomes a function
of ∆ as

C(∆) = log2det(IM + γ∆Heff(Heff)H), (8)

where ∆ is a diagonal matrix consists of ∆i’s. This is
derived rigorously in [6].

The objective is to find ∆i’s which maximize (6).
We observe that this problem is NP hard because it is
solved with brute-force search with

(
M
M ′

)
cardinality as

described in [7]. We seek to formulate the problem into
a simpler problem by applying relaxation on the ∆i’s
by allowing ∆i ∈ [0, 1]. This problem then becomes a
convex optimization problem with lower complexity. The
reformulated problem is described as follow

maximize : log2det(IM + γ∆Heff(Heff)H)

subject to

0 ≤ ∆i ≤ 1, i = 1, ...,M

trace(∆) =

M∑
i=1

∆i = M ′. (9)

We apply a rounding scheme after the solution is found,
where we round the highest M ′ ∆i’s to 1 and the rest to
0; which indicates the selected antenna. This is solved
efficiently using the interior point method [8] which is
described in detail in Sec. IV. In Sec. V, we compare the
capacity of P-MIMO to conventional MIMO. It is worth
to note that conventional MIMO employ M×N channel
matrix H whose entries are (ZMCSCG); therefore, the
capacity of convention MIMO system can be analyzed
by replacing Heff by H in (5) and (9).



IV. INTERIOR POINT METHOD

Interior point method solves optimization problems
that contain inequality constraints by combining the
objective function with a barrier term. Adding such term
results in having the optimal unconstrained value in the
feasible space, such that violation of inequality con-
straints could be prevented. The optimization problem in
(9) is reformulated using interior point method as follows

minimize : tf ′
0(∆i(t)) + ϕ(∆i(t))

subject to

trace(∆) =

M∑
i=1

∆i = M ′. (10)

where

f ′
0(∆i(t)) = −log2det(IM + γ∆Heff(Heff)H)

ϕ(∆i(t)) = −
M∑
i=1

log(∆i(t)(1−∆i(t))) (11)

are the objective and the inequality constraint of (9),
respectively.

Newton’s method is used to find the optimal value for
(10). It takes initial value ∆i(t) in the strictly feasible
set, and ∆i(t) is updated by adding the Newton’s step
in each iteration. The Newton’s step is calculated using
the equation as follow[
H(∆i(t)) J(∆i(t))

T

J(∆i(t)) 0

] [
∆Newton

λ

]
=

[
−g(∆i(t))
−h(∆i(t))

]
,

(12)

where f0(∆i(t))is the objective function in the optimiza-
tion problem (10), h(∆i(t)) is the equality constraint in
(10), g(∆i(t)) is the gradient of f0(∆i(t)), H(∆i(t)) is
the Hessian of f0(∆i(t)), and J(∆i(t)) is the Jacobian
of h(∆i(t)).

Each value ∆i(t) is updated by adding ∆Newton, the
update parameter µ is used to update t in each iteration.
The overall algorithm to update ∆i using Newton’s
method is summarized in Algorithm 1.

V. EXPERIMENT

In this section, we present the performance of our
system with experiment results found via Monte-Carlo
simulation. We obtain the average capacity of over 2000
realization of the channel matrix for SNR regime from
0 to 20 dB. The result is illustrated in Fig. 2. The
simulation parameters are as follows, N = 2, M = 6 and
M ′ = 2. Fig. 2 conveys that optimally selected antennas
(red) yield higher capacity than that of randomly selected

Algorithm 1 Update ∆i

Require: ∆i (i = 1, 2, ...,M), t > 0,
µ (update parameter) > 1, ϵ (tolerance) > 0

Ensure:
J(∆i(t))← Jacobian of h(t)
h(t)←

∑M
i=1∆i −M ′

while M/t >= ϵ do
∆Newton ← −J(∆i(t))

−1h(t)
∆i ← ∆i +∆Newton

t← µt
end while
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Fig. 2. Capacity v/s SNR, M = 6, N = 2, M ′ = N

antennas (yellow). Moreover, its capacity has very close
agreement to that of the capacity of selected antennas
found with brute-force search (green). This proves that
the convex method performs as well as the brute-force
method. By applying (9) to the P-MIMO system (black),
the capacity is close to the capacity found with full
antennas of conventional MIMO system (blue); there-
fore, exhibiting that P-MIMO combined with antenna
selection further enhanced antenna selection system from
that of conventional MIMO system.

VI. DISCUSSION

The time complexity of each Newton’s step is O(M3),
and the total number of Newton’s step of the interior
point method has an upper bound of O(M0.5). To sum-
marize, the time complexity of Algorithm 1 is O(M3.5).
On the other hand, the exhaustive search method, which
selects all possible M ′ from M antennas, has complex-
ity O(M5). Therefore, Algorithm 1 provides a solid
improvement in time complexity than the exhaustive
search.



VII. CONCLUSIONS

This paper finds the best subset of polarization-agile
antennas of P-MIMO system which captures the large
portion of the full system capacity. Antenna selection
problem is formulated into a convex optimization prob-
lem which was solved efficiently using interior point
method. The result shows that the proposed method yield
a capacity that has a very close agreement with the
capacity found with brute force search; showing that we
have the advantage over the brute force method because
our method has lower complexity.
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